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SUMMARY 
A local mode Fourier analysis is used to assess the suitability of the SIMPLE pressure-correction algorithm to 
act as a smoother in a multigrid method. The necessary ellipticity of the Navier-Stokes equations and their 
discrete representation are established. The theoretical analysis is compared with practical results. 
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INTRODUCTION 

In a companion paper Sivaloganathan and Shaw ' present an efficient non-linear multigrid 
procedure for the incompressible Navier-Stokes equations. The underlying smoothing method 
used is the SIMPLE pressure-correction algorithm of Patankar and Spalding.2 It is found 
empirically that this method has satisfactory smoothing properties over a wide range of Reynolds 
numbers. The method reduces high-frequency error components sufficiently to enable the 
construction of a multigrid method which exhibits grid-independent convergence rates. 

The aim of the present paper is to confirm these results by means of a Fourier analysis of the 
SIMPLE algorithm. Such an analysis is justified in the context of a multigrid smoother, since we 
are interested only in the high-frequency error reduction and these errors have a small domain of 
influence. The analysis presented in this paper is readily extended to include other pressure- 
correction methods such as SIMPLER and SIMPLEST. 

The existence of iterative methods with good error-smoothing properties depends upon the 
ellipticity of the discrete representation of the partial differential equations in question. This in turn 
is dependent on the ellipticity of the continuous system. For this reason the paper begins by 
establishing that both the incompressible Navier-Stokes equations and their discretization-as 
described in Sivaloganathan and Shawl -are elliptic. 

It is found that the practical behaviour of the iteration is well modelled by Fourier analysis and 
that the SIMPLE algorithm has good smoothing properties. 

CONTINUOUS AND DISCRETE ELLIPTICITY 

In this section we establish the ellipticity of the continuous and discrete systems of equations under 
consideration. Ellipticity of the continuous system is meant in the sense of Dough and Nirenberg,3 
while the definition of Thomee4 motivates the application to the discrete approximation. 

Brandt and Dinar' generalize this concept of discrete ellipticity and discuss its importance in the 
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Fourier analysis of smoothing methods. Their approach is followed in this paper. As illustrated by 
Shaw,6 the discrete ellipticity of a discretization is a necessary condition for the existence of a 
smoothing method. 

Continuous ellipticity 

written as 
The Navier-Stokes equations for the steady incompressible flow of a Newtonian gas may be 

a p u  a p v  -++=o, 
dx ay 

where x, y denote the co-ordinate axes and u, u the components of the velocity in these directions; 
p denotes the static pressure, p the density and p the viscosity; p and p are assumed to be 
given functions of x, y only. 

A linearization of (1) is obtained by freezing p, p at po, po respectively, and velocities u, u, 
where they contribute to non-linear terms, at u,, uo respectively. For simplicity it is assumed 
that po, po, uo ,  uo are constants. The linearized system may then be written as 

where the linearized convective operator 

c = p ,  u,--+u,- . ( :x :y) 

=lo- 0 

0 

(3) 

For the purposes of this paper, non-linear systems of equations will be considered to be elliptic if 
the linearized equations are elliptic for any choice of the frozen values po, p,,, uo, uo.  For brevity we 
denote system (2) as 

Lq = 0, (4) 
where L is a linear operator and q = (u, 0, p)' is a state vector. The Fourier transform 2 of L is given 
by 

c =  [:,,,02 t+pO(2O:+d:) ( 5 )  
0 

e + p0(2e: + e:) / lo  o1 e, 
i#, 

where c* = poi(uod, + u 0 0 2 )  is the Fourier transform of c from (x, y )  into (01, 02) .  2 is known as the 
symbol of L. 
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Ellipticity of (1) in the sense of Dough and Nirenberg3 depends on the regularity of 2 for 
8=(01,0,)T not equal to 0. To investigate the ellipticity of the system, we consider the 
determinant Z of 2 : 

Z = det 2 = (0: + e;)[po(ef + e;) + poi(uoOl + u , ~ , ) - J .  (6) 

The system (4) is defined to be elliptic if z is non-zero for all real 8 not equal to 0. Clearly 
this is the case for all non-zero p o  and hence the linearized problem (2) is elliptic. Thus the 
non-linear problem (1)  is considered also to be elliptic. 

Defining the Reynolds number as Re = po(uz + ~ ; ) ~ ’ ~ / p ~ ,  we note that for highly convective 
regimes, for which the Reynolds number is large, ellipticity is most nearly lost for lines in the (O1, 0,) 
plane perpendicular to a local streamline. 

Discrete ellipticity 

In this section we demonstrate the ellipticity of the discretization of equations (I) described 
by Sivaloganathan and Shaw.’ Before doing so we define discrete ellipticity in the sense of 
Thomee4 and Brandt and Dinar.5 

Symbols and ellipticity measures of Toeplitz operators 

Consider the discretization of a constant-coefficient linear partial differential equation on a 
regular two-dimensional infinite grid of mesh length h. This yields an infinite-order banded matrix 
Lh with constant elements. Matrices of this type are termed ‘Toeplitz’ matrices (see Hemker7). 

Let Lh be a Toeplitz matrix. The symbol C h ( 8 )  of Lh is defined by 

Lhexp (iO.x/h) = ih(e)exp(i8’x/h), (7) 

where 8 = (6,,8,)~lW~ and @x/h = (0,x + 02y)/h; hence gh(d) is the discrete Fourier 
transform of Lh. 

Thomee4 defines Lh to be elliptic if L h ( 8 )  > 0 and also gives a stronger definition which ensures 
consistency of the discrete approximation. Brandt and Dinar5 point out that formally elliptic 
discretizations may behave very badly for particular values of the step length h. This observation 
motivates the following definitions. 

The ‘h-ellipticity measure’ of a Toeplitz matrix Lh is defined to be 

where 

I I Eh(Lh) = inf -, 
k J Y O  I L h I  

P = [ - n, nI2 is the set of all Fourier frequencies and 2 = F/( - n/2, 42)’ is the set of 
‘high‘ frequencies. 

The Toeplitz operator Lh is said to be h-elliptic if Eh(Lh) is bounded above zero. 
A discretization is said to be h-elliptic if the Toeplitz operator derived by defining it on a regular 

infinite grid is h-elliptic. 

Generalizations 

(i)  Variable coefficients. If the discretization has spatially variable coefficients, it is said to be 
h-elliptic if it is so for each set of values of the coefficients. 
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(iii) System of equations. For a system of s partial differential equations, the symbol is an s x s 
matrix. In this case one may work with the determinant of the symbol of the discrete operator. 

Other definitions are possible. For details of these, and for further generalizations of the concept 
of discrete ellipticity, see Brandt.' This publication also illustrates the relationship between 
h-ellipticity and the familiar continuous ellipticity. 

The discrete Nauier-Stokes equations 

Sivaloganathan and Shawl described a finite volume discretization of the system (1) on a 
staggered MAC grid as depicted in Figure 1. In this section we investigate the ellipticity of this 
discretization applied to the linearized problem (2). With reference to Figure 1, the resulting 
discrete equations on an infinite uniform grid of mesh length h are 

L h q h =  -pO6td i  
-Pos3y, ax :;j[;] =[:I, (10) [:i 8; 0 - 

where uh,  uh,  P h  are grid functions approximating u, u, p on the infinite regular grid. The component 
operators of Lh are defined by equations (5)-(8) of Sivaloganathan and Shawl with p ,  p, u, u frozen 
at p o ,  p0, uo, uo respectively. 

Using these definitions, the symbol c h ( 6 )  of Lh is easily found to be 

(11) 
0 

where 

P 
h 

-iA(uosinO, +u0sin8,), 
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Po 
k 

- i-(uo sin 8, + uo sin 02), 

s1 = sin(8,/2), s2 = sin (8,/2). 

The determinant z h ( e )  of t h ( 0 )  is therefore 

Thus 
zh(6) = 4 [ S 3 3 q  + S:dg(e) - 8po~~~: /k2 ] /k2 .  

Im(zh(6)) = - 4p0(s: + s;)(uo sin 8, + uo sin B2)/k3, 

which is zero along lines uo/uo = - sin 8,/ sin 02. 
Since 

Re(d;(B)) 3 4pO(2s? + s$)/h2, 

Re(d3) )  2 4p0(2s; + s:)/k2, 

Re(Eh(6)) 2 p0[4(s: + s;)/k2I2. 
it follows that 

Clearly 1 zh(e) 1 is small only in the region of (el, 8,) = (o,o) and hence Lh has a good k-ellipticity 
measure and the discretization is discretely elliptic. 

SMOOTHING ANALYSIS 

In this section we use local mode analysis (introduced by Brandtg) to examine the SIMPLE 
pressure-correction algorithm from the point of view of its smoothing ability. The reduction of 
high-frequency error components is a local process dependent principally on the local difference 
star. Thus the analysis of this reduction need not take account of distant boundaries or varying 
difference stars. 

One therefore considers a sequence of Toeplitz problems obtained by defining local difference 
stars over infinite grids (see Shaw6). For each problem one may determine the amplification factor 
p(6 )  which is the symbol (or discrete Fourier transform) of the relevant iteration matrix. The 
‘smoothing factor’ ,G is defined by 

P = SUP IP(e)l, (19) 
B E Y  

where A? denotes the range of high-frequency 8 values. 
This smoothing factor is a measure of the worst high-frequency error reduction. The smoothing 

factor of the variable-coefficient problem is then defined to be the worst of these local smoothing 
factors. Although the arguments for this definition are somewhat vague, it is in practice a very 
accurate measure of the ability of a relaxation method to damp high-frequency error components. 
The smoothing factor may therefore be used to optimize the efficiency of a particular method or to 
choose between different methods. 

In the case of systems of partial differential equations, p ( 6 )  is a square matrix of order equal to the 
number of equations in the system. The definition of the smoothing factor remains the same with 
lp(6)l replaced by p(p(6)) (see Shaw6). 

If the operator is non-linear, then p is defined to be the worst smoothing factor of the linearized 
problem (about any approximate solutions which may be encountered in the solution process). 

Local mode analysis 

shown in Figure 1. 
Consider an arbitrary local section of the mesh with velocity and pressure distributions as 
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Assume that at the start of the iteration the errors in w,v,p are given by 

and that the 0 = ( O , ,  8,) components of the errors are defined by 

[:] = [:qexp(i€l*x/h) 4 

where &x/h = (0, x + 8,y)/h. 
After the first stage of SIMPLE (momentum relaxations) the error amplitudes have become 

and after the second stage (pressure correction) 

Our aim is to find the amplification matrix A which is defined by 

where A, and A, are amplification matrices for stages 1 and 2 respectively. The smoothing factor 
will then be given by 

11 = SUP [P(A)I. 
@€.% 

In the case of convection-dominated flows the definition 

p =  SUP [A411 
luo/ s l,luol Q I&.% 

may be more relevant, where uo, uo are the frozen velocities used to linearize the problem. In this 
case uo, uo are constrained in order to maintain the relevant Reynolds number. 

Momentum relaxation 

The u-momentum equation of (10) may be written 

UFup  = akuw + akuE + a k u N  f a:uS - (pp - P&’)/h + PO(uN - VNW + UW - up)/h,  (22) 
where the coefficients u:, etc. are defined by equations (7) and (8) of Sivaloganathan and Shawl and 
contain details of viscous terms. In any case except Re = 0 they also contain details of convective 
terms, based on frozen velocities uO,uO. We wish to analyse the effectiveness of alternating line 
successive over-relaxation (SOR) as a smoother applied to equation (22). 
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Consider firstly x-line SOR. This is developed by writing 

a;;, = a;up + rmom(a!&;, + u;c, + a;uN + a;;, - a;up) 

+ rmom [k3('N - uNw + uw - up)/h2 - ( P P  - ~ w ) / h l ,  (23) 
where variables with the tilde above are either updated simultaneously or are already updated due 
to the marching direction. The parameter rmom is the relaxation factor used for the momentum 
equations. Since the true solution satisfies (23), the equation may be written in terms of errors: 

- - a u e u  + rmOm(u;& + ukZi + ahe: + aie"; - a;le;l) 

+ rrnom[,un(eG - ei;, + eb - e;)/h2 - (ef: - e&,)/h]. (24) 
Then, substituting for the 8 components of Z; and so forth, we obtain 

(x"); {a; - rmom[a; exp (id,) + a!&exp (- i B , )  + a; exp ( -  id,)] } 

(25) 
4rmorn@0 c l v s  2 r m o m i  c l p s  

=z .);{at: + rmom Cakex~ (id,) - .;I} - 7 0 1 2 e 1. 

In the next stage (y-line SOR) we have 

c i i  {a: - rmom [ah exp (i 0,) + a& exp (- i 8, ) + a: exp ( - i 0,) J 1 

So for the total alternating sweep we have 

1 
- 

8 -p[vtv~cI~ - (ri + v ~ ) ( ~ ~ ~  + i"a$)], rtr; 
where 

4rrnomp0 2rmomi 
( p -  h.7 '1'2, i' = h S 1 ,  

r: = a;l - rrnom[aE exp (ifl,) + a; exp (- ifl,) + a; exp (- id,)], 

r; = a; - rrno,Ca~ exp (id,) + a!& exp ( -  id,) + a; exp (- id,)], 

v: = a: + rmom [a;; exp (i 0,) - a; ] ,  

v: = at: + rmorn[ag exp (id,) - u;].  

The u-momentum relaxation follows along similar lines and leads to the amplification 

1 

r x r y  

&U - 
8-,[v':vgal-(r':+v,")(cp~);+ i"x5)1, 

where 

y': = a: - rmom[a~ exp (id,) + a& exp ( -  id , )  + a; exp ( -  id,)], 

r: = a; - rmorn[a& exp (ifl,) + a& exp ( -  i8,) + a; exp (- ifl,)], 

vS: = a; + rmom [a; exp (i 0,) - a:], 

v," = a; + rmom [a; exp (i 0, ) - a; ] .  



(OE) 

r 1 
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~ h = p h + Y p P h 1 ( 6 ~ u h + ~ ; c h )  (40) 
(assuming that (34) has been solved exactly). The true solution clearly satisfies relations such as 
(38)-(40) and so the errors may be written as 

Y 

e; = 6; -?d;P;1(i?;d; + s;d;) ,  

eP- h - d h  P + rpP, (hie: + SKd;). 
UP 

Substituting Fourier components as before, we obtain 

(42) 

(43) 

where gh(e) is the symbol of P h :  

~ h ( ~ ) = u ~ e x p ( i ~ , ) + a ~ e x p ( - i ~ , ) + a ~ e x p ( i ~ , ) + a ~ e x p ( - i ~ , ) - a ~ .  

Thus the amplification matrix A, of the pressure-correction stage of the SIMPLE algorithm is 
defined by (44). 

Smoothing factors 

The smoothing factor of the SIMPLE algorithm is calculated as follows. The amplification 
matrix A = A,A, is easily calculated from equations (29) and (44). A is a 3 x 3 complex 
non-Hermitian matrix. Its amplification factor p(O)=p(A) is found using a NAG routine for 
the eigenvalues of a general matrix. The smoothing factor defined by equation (20) is then found 
by embedding the calculation of p(0) in a NAG routine for linearly constrained minimization. 
The definition of p for highly convective flow given in equation (21) was found to be too costly 
to evaluate. As an alternative we define the smoothing factor to be 

P =  max supCp(A)I , (45) 
(UG>%)E% { O E 8  1 

where %={(O,l), (l,l), (l,O), (1,-1), (0,-1), ( -1 , - l ) ,  (-LO), (-1,l)) is a set of flow 
directions of interest. 

Smoothing factors are presented in graphical format in Figures 2-12. Two different styles of 
presentation are employed. Figures 2-6 show contours and isometric plots of the amplification 
factors at  various mesh Reynolds numbers and flow directions. The contour k gives a value 
p(0)  = k/10. A good smoother should have a small amplification factor in the high-frequency 
region of the 0 plane: (el, 0 2 ) E %  = [ - n, XI’/( - n/2,7~/2)~. 
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Figure 2. Amplification factor at mesh Reynolds number 1 
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Figure 3. Amplification factor at mesh Reynolds number 100; (uo,uo) = @,I) 
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Figure 4. Amplification factor at mesh Reynolds number 100, (t io, uo) = (1,l) 
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Figure 5. Amplification factor at mesh Reynolds number 100; (uo,uo) =(1,0) 
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Figure 6. Amplification factor at mesh Reynolds number 100, (I+,, uo)  = (1 ,  - 1) 
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SMOOTHING FACTORS FOR MESH RE = 0. 0 
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Figure 7. ji for velocities in "(I at Re = 1 

SMOOTHING FACTORS FOR MESH RE = 1.5 
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659 

0.659 

0. 639 

I 

Figure 8. p for velocities in 42 at Re = 100 
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Figure 9. 1( for velocities in 9 at Re := 400 
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Figure 10. 1( for velocities in UZC at Re = 1000 
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SMOOTHING FACTORS FOR HESH RE = 75. 8 
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Figure 11. ji for velocities in Q at Re = 5000 

SHOOTHING FACTORS FOR HESH RE = 151.5 
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995 
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Figure 12. ji for velocities in %! at Re = 10000 
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Figures 7-12 show ,ii as defined by equatioa (20) for the flow directions in the set a. The 
Reynolds numbers tested are those used in Sivaloganathan and Shaw.' In the next section these 
factors will be compared with experimental convergence results. Each arrow points in the relevant 
direction in (uo,vo) space. The length of the arrow in that flow direction is proportional to ,ii 
for that velocity. Desirable features of ,ii are that it should be bounded reasonably below unity 
and that it should be fairly independent of flow direction. 

The relaxation factors r = {rmom,ruo, r ,}  used in Figures 2-6 are given in Table I together 
with the smoothing factors obtained. In  these cases the analysis assumes that alternating 
symmetric line SOR has been used for the momentum equations. Table I1 gives similar results 
for Figures 7-12, listing the minimum and maximum values of ji obtained over all flow 
directions in 42. These results are for unsymmetric alternating SOR in correspondence with 
the practical experiments. 

Figure 2 shows the amplification factor at mesh Reynolds number 1 for a flow direction 
(uo, u o )  = (0,l). The smoothing factor in this case is ,ii = 0.619. At such a low mesh Reynolds 
number the amplification factor is independent of flow direction. Clearly SIMPLE is a satisfactory 
smoother for diffusion-dominated flows. 

In Figures 3-6 the same information is depicted for convection-dominated flow at mesh 
Reynolds number 100. The flow direction for each figure is (0, I), (1, l), (1,O) and (1, - 1) 
respectively. Owing to symmetry of the amplification factor, the contours for all other members 
of % are identical to one of these. The discrete ellipticity analysis showed that the imaginary 
part of the symbol of the discrete operator becomes zero along lines in the 8 plane which are 
perpendicular to the flow direction. Discrete ellipticity is most nearly lost along such lines. As 
suggested, this has a marked effect on the amplification factor at high mesh Reynolds numbers. 
This is illustrated admirably in Figures 3-6. In Figure 3 the amplification is clearly largest along 
the line O 2  = 0, which is perpendicular to the flow direction uo = 0. In Figure 4 this maximum 

Table I. Relaxation factors and 
smoothing (factors for Figures 2-6). 

In all cases r,, = 1 = rp 

Figure r m o m  

2 0.42 0.6 19 
3 0.15 0.993 
4 0.15 0.839 
5 0.15 0993 
6 0.15 0.845 

Table 11. Relaxation factors and smoothing 
(factors for Figures 7-12). In all cases ruv = I = rp 

- 
Figure r m o m  P m i n  Pmax 

7 0.50 0.603 0.604 
8 0.45 0.630 0.664 
9 0.40 0592 0.774 

10 0.25 0.720 0.935 
1 1  0.15 0.839 0.992 
12 0.15 0.839 0.996 
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has moved to the line 8, = - 8,, in Figure 5 to 8, = 0 and in Figure 6 to 8, = 8,. In all cases 
it is perpendicular to the flow direction. These poor smoothing rates at high mesh Reynolds 
numbers along such lines in the 8 plane are a feature of the discretization-which nearly loses 
ellipticity-rather than the SIMPLE algorithm. Any algorithm applied to the discretization (10) 
will yield poor smoothing rates along these lines. Furthermore, a more suitable discretization 
is not available without the use of extra stabilizing terms (artificial viscosity). However, 
some improvement in smoothing factors may be obtained by judicious choice of the relaxation 
factor r .  

Figures 7-12 show smoothing factors for the set of velocities (uo, vO)& as described above. 
The Reynolds numbers for these figures are 1, 100,400, 1000, 5000 and 10000 respectively. These 
and the mesh length h = 1/66 are chosen in accordance with the practical experiments of 
Sivaloganathan and Shaw.’ The corresponding mesh Reynolds number appears at the top of 
each figure. As can be seen from Figures 7 and 8, the SIMPLE algorithm is a good smoother 
up to Re = 100, with ji ranging from 0.604 to 0.664 and little variation due to flow direction. 
For these cases the mesh Reynolds number is less than 2 and hence from equations (7) and (8) 
of Sivaloganathan and Shawl we see that the upwind differencing has not come into effect. At 
Re = 400 the influence of the flow direction begins to show, but the algorithm is still a good 
smoother with ji= 0.774. From Re = 1000 to Re = 10000 the flow direction bcomes more 
important still and the smoothing rates are poorer, albeit principally along particular lines in 
the 8 plane. These rates may be improved by the choice of r. In considering smoothing analysis 
at high Reynolds numbers it should be remembered that the linearization made in the analysis 
is less valid than for diffusion-dominated flow. The main aim of such an analysis should therefore 
be to show that a method behaves well for moderate Reynolds number. It is clear that SIMPLE 
satisfies this criterion. 

A COMPARISON O F  THEORETICAL AND PRACTICAL 
SMOOTHNG ANALYSIS 

As mentioned at the end of the previous section, some doubt exists as to the validity of the 
theoretical smoothing analysis in the case of convection-dominated flow. This is principally due 
to the linearization, which assumes a constant velocity field when evaluating non-linear terms 
in equations (1). In practice these velocities are locally variable and dependent on the current 
solution. 

Given a multigrid method for solution of the problem under consideration, a practical 
smoothing analysis may be made in order to test the validity of the theoretical analysis. This is 
possible since the theoretical smoothing factor is defined to be the asymptotic convergence rate 
of each smoothing iteration in a two-grid multigrid method with a perfect coarse grid correction; 
i.e., a coarse grid correction which annihilates all error components in the ‘low’-frequency range 
2’ = (- 71/2,71/2)’. For more details of this interpretation of the smoothing factor 

see Stiiben and Trottenberg.” 
It is not difficult to simulate this type of method in practice. A multigrid method is used to solve 

the problem on a finest grid denoted by 0,. Progressively coarser grids Rk, k = rn - 1 (- 1) 1 are 
defined in a natural manner. The multigrid method used has v1 pre-relaxations, v, post- 
relaxations and y k  coarse grid corrections on each grid Rk.y, is chosen to be 1, as in a conventional 
multigrid method (where y = 1 or y = 2 are the usual choices). ym- , is chosen to be much 
larger, so that the coarse grid correction for R, is solved almost exactly. On coarser grids 
y k  = 1, k = rn - 2( - 1) 1 is a reasonable definition. This method simulates the situation described 
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Table 111. Theoretical and practical smoothing 
factors 

Reynolds /%in Pmax PP 

1 0.603 0604 0478 
100 0630 0.664 0.558 
400 0.592 0774 0.588 

lo00 0720 0935 0.725 
5000 0839 0.992 0.840 
loo00 0.839 0.996 0.910 
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above. The practical smoothing factor pp is therefore defined by 

9 (46) l/(Vl+ v 2 )  
Lip = (Krng) 

where I C , ~  is the asymptotic convergence rate of the multigrid method described above. If the 
theoretical analysis is valid, p and pp will be in close agreement. 

Table I11 gives values of p,, for the experiments described in Sivaloganathan and Shawl together 
with minimum and maximum theoretical smoothing rates over velocity fields in 42. These three 
rates are also depicted in Figure 13. It is clear that the minimum theoretical smothing rate 
accurately models the practical behaviour of SIMPLE as a smoothing method, even for high 
Reynolds numbers. Note from Figures 9-12 that pm,, always occurs for velocity fields aligned with 
grid lines. For practical flows in which there is no persistent alignment between streamlines and 
grid lines one would therefore expect the method to behave as predicted by prnin. This indeed seems 
to be the case for the present recirculating flow problem--shear-driven cavity. However, even in 
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cases of strong alignment p,,, is expected to be a pessimistic prediction of the practical smoothing 
rate. 

Figure 13 also demonstrates the divergence of the two theoretical rates which occurs at the onset 
of upwinding-at mesh Reynolds number 2, corresponding to Reynolds number 132. 

CONCLUSIONS 

A theoretical analysis of the smoothing capabilities of the SIMPLE pressure correction has been 
presented. This analysis has shown that h-independent convergence rates are attainable by a 
multigrid method for solution of the incompressible Navier-Stokes equations. Such convergence 
rates have already been achieved in practice. 

The analysis has been compared with the practical behaviour of the method and found to be an 
accurate predictor of convergence rates. 

The potential for improvement of the existing method by further analysis of the theoretical 
results is enormous. For example, optimization of the smoothing rate with respect to the relaxation 
parameters is one possible avenue. The analysis presented also permits a critical evaluation of 
candidate smoothers, since it is readily adapted for application to modified pressure-correction 
schemes such as SIMPLER and SIMPLEST. 
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